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Abstract The solvability of the word problem for Yamamura’s HNN-extensions
[S; A1, A2;ϕ] has been proved in some particular cases. However, we show that,
contrary to the group case, the word problem for [S; A1A2;ϕ] is undecidable even if
we consider S to have finite R-classes, A1 and A2 to be free inverse subsemigroups
of finite rank and with zero, and ϕ, ϕ−1 to be computable.

Keywords HNN-extension · Inverse Semigroups · Word Problem · Undecidability ·
Amalgams of Inverse Semigroups

1 Introduction

The concept of HNN-extension was originally introduced for groups by Higman,
Neumann and Neumann, who showed that if A1 and A2 are isomorphic subgroups
of a group S, then it is possible to find a group H containing S such that A1 and A2
are conjugate to each other in H and such that S is embeddable in H . This concept
may be generalized to the class of semigroups in different ways, see for instance
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[1,4,6,7,9]. In the class of inverse semigroups there are two main approaches, one
given by Gilbert [5] and the other one by Yamamura [19]. For basic definitions on
inverse semigroups we refer the reader to standard books on the subject [8,12,15]. In
this paper we consider HNN-extension in the sense of Yamamura, and we refer to [21]
to clarify the connections with Gilbert’s case. The issue that it is considered here has an
algorithmic nature: the word problem in Yamamura’s HNN-extension [S; A1, A2;ϕ]
under mild conditions on the tuple S, A1, A2, ϕ. In some cases this problem has been
proved to be decidable, for instance when S is finite [16]. Another case for which
the word problem is decidable is in the lower bounded case [10] under the following
conditions:

– S has solvable word problem;
– A1 and A2 have solvable membership problem and ϕ is computable;
– there is an algorithm for deciding whether or not the sets UAi (e) = {u ∈ Ai : u ≥

e}, i = 1, 2, are empty for every idempotent e of S;
– there is an algorithm for computing the minimum idempotents of UAi (e), i = 1, 2
(in case it is non-empty);

– there is an algorithm to decide whether a path connecting two given vertices of
the Schützenberger automaton relative to [S; A1, A2;ϕ] is labelled by an element
from A1 or A2.

Another case in which the word problem is decidable is when S is a free inverse semi-
group and A1 and A2 are finitely generated subsemigroups [10]. All these results are
shown using graphical methods, introduced by Stephen in [18], to obtain “graphical
normal forms”. For instance, Munn trees are “graphical normal forms” for free inverse
semigroups [14]. Britton’s Lemma for HNN-extension of groups provides a normal
form in the usual sense. This normal form is effectively computable when the original
group S has solvable word problem, the subgroups A1 and A2 have solvable member-
ship problem, and ϕ, ϕ−1 are computable (see Corollary 2.2 of [13]). As a byproduct,
the word problem for HNN-extensions of groupswith the aforementioned properties is
decidable. In the inverse semigroup case there is no analogue of Britton’s Lemma, and
the use of graphical methods based on Schützenberger automata is the key for proving
the decidability of the word problem in the previously mentioned cases. In [20] the
author generalizes Britton’s Lemma for the case of a locally full HNN-extension of
an inverse semigroup. This fact provides a normal form that yields the decidability of
the word problem under analogous conditions to the group case mentioned above [20,
Theorem 3.6 ]. However, it may be the case that, in general, such a normal form does
not exist. This paper partially supports this point of view, and it offers a result on
the opposite direction with respect to the previous decidability results. Indeed, we
show that even assuming nice conditions on the tuple S, A1, A2, ϕ, the word prob-
lem for Yamamura’s HNN-extensions of inverse semigroups may be undecidable. In
particular, we show that the following main theorem holds.

Theorem 1 The word problem for Yamamura’s HNN-extensions of inverse semi-
groups [S; A1, A2;ϕ] is undecidable even if we assume the following conditions:

– S has finite R-classes (therefore solvable word problem);
– the membership problem for A1, A2 in S is decidable, and A1 � A2 is a free

inverse semigroup with zero and finite rank;
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Undecidability of the word problem...

– ϕ and its inverse are computable functions.

It is noteworthy that, although inverse semigroups may be seen to be very close to
groups (by the Vagner-Preston Theorem inverse semigroups may be represented as
partial one-to-one maps, while groups as bijective maps) the result obtained here
contrasts with the groups case.

The proof of Theorem 1 relies on the following undecidability result regarding the
word problem under similar conditions for amalgams of inverse semigroups:

Theorem 2 [17, Theorem 1] The word problem for an amalgam [S1, S2; U, ω1, ω2]
of inverse semigroups may be undecidable even if we assume the following conditions:

– S1, S2 have finite R-classes;
– U is a free inverse semigroup with zero of finite rank;
– the membership problem of ωi (U ) is decidable in Si for i = 1, 2;
– ω1, ω2 and their inverses are computable functions;

Roughly speaking we show that, given an amalgam [S1, S2; U, ω1, ω2] with the
aforementioned properties, we may effectively build an HNN-extension S∗ with the
conditions stated in Theorem 1 such that if the word problem in S∗ is decidable, then
it is also decidable for [S1, S2; U, ω1, ω2]. This leads to a contradiction in view of
Theorem 2. The paper is organized as follows. In Sect. 2 we recall some basic notions
and terminology regardingSchützenberger automata ofYamamura’sHNN-extensions.
We also recall a relationship between Yamamura’s HNN-extensions and amalgams of
inverse semigroups, investigated in [3], that is crucial in the aforementioned reduction
to the word problem in amalgams of inverse semigroups. Finally, in Sect. 3 we prove
Theorem 1.

2 Basic Notions

Let X be a finite set and denote by X−1 the set {x−1 : x ∈ X} of formal inverses of the
elements of X where −1 is the usual involution on X ∪ X−1. We put S = I nv〈X |R〉
and we say that 〈X |R〉 is a presentation of the inverse semigroup S whenever S =
(X∪X−1)+/θ , where θ is the least congruence containing R and theVagner’s relation:

ν = {zz−1z = z, zz−1yy−1 = yy−1zz−1, ∀z, y ∈ (X ∪ X−1)+}.

Wewill assume throughout the paper that the inverse semigroups are finitely presented,
i.e., X, R are finite. The following definition of HNN-extension is due toA. Yamamura
[19].

Definition 1 Let S be an inverse semigroup S = I nv〈X |R〉 and let ϕ : A1 → A2 be
an isomorphism of an inverse subsemigroup A1 of S onto an inverse subsemigroup A2
of S where e ∈ A1 ⊆ eSe and f ∈ A2 ⊆ f S f (or e /∈ A1 ⊆ eSe and f /∈ A2 ⊆ f S f
for some idempotents e, f ∈ S). The inverse semigroup

S∗ = I nv〈S, t | t−1at = ϕ(a), t−1t = f, t t−1 = e, ∀a ∈ A1〉
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is called the HNN-extension of S associated with ϕ : A1 → A2 and it is denoted by
[S; A1, A2;ϕ].
In the sequel we put S∗ = I nv〈X | R ∪ RH N N 〉where X = X ∪{t} and we compactly
denote by RH N N the relations t−1at = ϕ(a), t−1t = f, t t−1 = e, for every a ∈ A1.
We refer to the presentation 〈X | R ∪ RH N N 〉 as the standard presentation of S∗. Since
we follow a combinatorial approach, we give some related notions and terminology
regarding Schützenberger automata. We recall that the Schützenberger automaton

A (X , R ∪ RH N N ;w) of a word w ∈ (X ∪ X
−1

)+ is the Cayley graph with respect to
the standard presentation 〈X | R ∪ RH N N 〉 with initial state the element represented
by ww−1 and final state the element represented by w. For further details and general
properties of Schützenberger automata we refer the reader to Stephen’s paper [18],
and to the paper [16] for some basic terminology and notions of a Schützenberger
automaton A (X , R ∪ RH N N ;w) from which this paper takes inspiration. Let Γ =
(V (Γ ), E, X) be a deterministic inverse word graph on X , where V (Γ ) is the set of

vertices, E ⊆ V (Γ ) × (X ∪ X
−1

) × V (Γ ) is the set of edges with the property that if

(v, a, v′) ∈ E , a ∈ X ∪ X
−1

, then (v′, a−1, v) ∈ E . The condition to be deterministic
is expressed by the property that if (v, a, p), (v, a, p′) ∈ E , a ∈ (X ∪ X

−1
), then

p = p′. An inverse word automaton (for short an automaton) is a pair (v, Γ, v′)where
v, v′ ∈ V (Γ ) are the initial and final states, respectively. A subgraph Δ of Γ with at
least an edge is called S-lobe if it is a maximal connected inverse subgraph on X . A
t-edge is an edge ofΓ labelled by t . Two vertices v1, v2 are called t-adjacent if they are
connected by a t-edge, i.e., if either (v1, t, v2) or (v2, t, v1) are edges ofΓ . Two distinct
S-lobes Δ1,Δ2 are called adjacent if there are two t-adjacent vertices v1 ∈ V (Δ1)

and v2 ∈ V (Δ2). The lobe graph of the inverse word graph Γ is the directed graph
G(Γ ) whose vertices are the S-lobes of Γ and there is a directed edge (Δ1,Δ2) from
an S-lobe Δ1 to an S-lobe Δ2 if (v1, t, v2) is a t-edge with v1 ∈ Δ1, v2 ∈ Δ2. In
[16], where it is considered the case in which the original semigroup S is finite, it is
shown thatA (X , R ∪ RH N N ;w) has a particular shape called t-opuntoid automaton
(or t-opuntoid graph in case we just consider the underlying graph). Since here we are
dealing with the general case, we are just interested in a weaker version, that we call
weak t-opuntoid graphs defined as follows:

Definition 2 An inverse word graph (automaton) on X is called weak t-opuntoid if
it is deterministic and its lobe graph is a tree.

By [10, Theorem2.2.1]we conclude that every Schützenberger automatonwith respect
to the standard presentation of S∗ is a weak t-opuntoid automaton.

As we have already mentioned in the introduction, the proof of Theorem 1 relies on
an analogous result for amalgams of inverse semigroups. We now recall some basic
notions and terminology concerning amalgams of inverse semigroups.

Definition 3 Let S1, S2 be two inverse semigroups with S1 ∩ S2 = ∅, and let ωi :
U ↪→ Si , i ∈ {1, 2} be two monomorphisms. The tuple [S1, S2; U, ω1, ω2] is called
the amalgam of S1 and S2 with core U . The free product of S1 and S2 amalgamating
U is the inverse semigroup S = S1 ∗U S2 such that:
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(i) there is a homomorphism σi : Si → S for every i ∈ {1, 2} and σ1 ◦ ω1 = σ2 ◦ ω2,
(ii) for every inverse semigroup T and for every pair {φi : Si → T, i = 1, 2} of

homomorphisms such that ω1 ◦ φ1 = ω2 ◦ φ2, there is a unique homomorphism
φ : S → T such that σi ◦ φ = φi for each i ∈ {1, 2}.

Notice that the free product and the amalgamated free product of inverse semigroups
are the coproduct and the pushout in the category of inverse semigroups, respectively.
In the sequel we assume the semigroups S1, S2 to be finitely presented with presenta-
tions 〈X1|R1〉, 〈X2|R2〉, respectively, with X1 ∩ X2 = ∅. Then, S1 ∗U S2 is presented
by 〈X |R ∪ RW 〉 with X = X1 ∪ X2, R = R1 ∪ R2, RW = {ω1(u) = ω2(u) : u ∈ U }
where, with a slight abuse of notation, for i ∈ {1, 2} the symbol ωi (u) denotes a word
wi ∈ (Xi ∪ X−1

i )+ representing the element ωi (u). This presentation is called the
standard presentation of S1 ∗U S2.

Let Γ be an inverse word graph (automaton) on X , a lobe of Γ is a maximal
connected inverse subgraph whose edges are labelled by elements of (X1 ∪ X−1

1 ) (a
lobe colored by 1) or by (X2 ∪ X−1

2 ) (a lobe colored by 2). Two lobes Δ1,Δ2 are said
to be adjacent if they share at least one common vertex, i.e., V (Δ1) ∩ V (Δ2) �= ∅.
In this context, the lobe graph of Γ is the undirected graph whose vertices are lobes
of Γ and whose edges correspond to the adjacency of lobes. In [2] it is shown that
the Schützenberger automata of words with respect to the standard presentation of the
free product with amalgamation S1 ∗U S2 of two finite inverse semigroups S1, S2 are
automata with a particular shape called opuntoid. Similarly to what we did before,
we define a weaker notion of opuntoid. A weak opuntoid graph (automaton) is a
deterministic inverse word graph (automaton) on X whose lobe graph is a tree. By
[3, Theorem 3.6] we deduce that Schützenberger graphs (automata) relative to the
standard representation of S1 ∗U S2 are weak opuntoid graphs (automata).

We may associate to each amalgam [S1; S2, U ;ω1, ω2] a particular Yamamura’s
HNN-extension. We briefly recall this construction, and we refer the reader to [3] for
further details. For each i ∈ {1, 2} consider an element ei /∈ Xi and let Sei

i be the
semigroup with adjoined identity ei . Note that Sei

i is presented by 〈Xi ∪ {ei }|R1
i 〉,

where

R1
i = Ri ∪ {e2i = ei , ei xi = xi ei = xi : ∀xi ∈ Xi }.

Let U 1 be the inverse semigroup obtained by adjoining the identity 1 to U . The
embedding ωi = U ↪→ Si may be extended naturally to an embedding ω1

i = U 1 ↪→
Sei

i by putting ω1
i (1) = ei and ω1

i (u) = ωi (u) for all u ∈ U . In this way we may
consider the amalgam [Se1

1 , Se2
2 ; U 1, ω1

1, ω
1
2]. Note that U e1

1 , U e2
2 embeds into the free

product Se1
1 ∗ Se2

2 , and with a slight abuse of notation we identify these subsemigroups
with U e1

1 , U e2
2 so that (ω1

1)
−1 ◦ ω1

2 is the isomorphism between them. Therefore,
the Yamamura’s HNN-extension associated to [Se1

1 ; Se2
2 , U 1;ω1

1, ω
1
2] is given by the

following HNN-extension:

[Se1
1 ∗ Se2

2 ; U e1
1 , U e2

2 ; (ω1
1)

−1 ◦ ω1
2]
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which is presented by 〈X |R∪ RH N N 〉, where X = X1∪ X2∪{e1, e2, t}, R = R1
1∪ R1

2,
and

RH N N = {(ω1
1)

−1 ◦ ω1
2(u1) = t−1u1t : ∀u1 ∈ U } ∪ {t t−1 = e1, t−1t = e2}.

Let S∗ = I nv〈X |R ∪ RH N N 〉, in [3, Theorem 1] it is proved that

S∗/ρ � (Se1
1 ∗U1 Se2

2 ) � (S1 ∗U S2)
1 (1)

where (S1 ∗U S2)1 stands for the free product with amalgamation S1 ∗U S2 with
adjoined identity 1, and ρ is the congruence on S∗ generated by the relation t =
e1 = e2. Moreover, in [3] it is proved that the Schützenberger automaton of a word
w ∈ (X ∪ X−1)∗ relative to the standard presentation of S1 ∗U S2 may be obtained
from the Schützenberger automaton relative to 〈X |R ∪ RH N N 〉 of a special word

w′ ∈ (X ∪ X
−1

)∗ associate to w. Precisely, consider the following factorization:

w = w1w2...w2n−1w2n

wherew1 ∈ (X1∪ X−1
1 )∗,w2i ∈ (X2∪ X−1

2 )+,w2i+1 ∈ (X1∪ X−1
1 )+, 1 ≤ i ≤ n −1

and w2n ∈ (X2 ∪ X−1
2 )∗. The following associated word

w′ = w1e1te2w2e2t−1e1...e2t−1e1w2n−1e1te2w2n

is called the separated normal form ofw. It is significant to recall the following results
from [3].

Lemma 1 [3, Lemma 3.4] Let w ∈ (X ∪ X−1)+. The Schützenberger automaton
A (X , RH N N ∪ R ∪ {t = e1, t = e2};w) may be obtained from the Schützenberger
automaton A (X , RH N N ∪ R;w′) of the separated normal form w′ of w by identifying
the initial and terminal vertices of each t-edge.

From which it is possible to prove the following proposition.

Proposition 1 [3, Corollary 3.5] The Schützenberger automaton of a word w ∈ (X ∪
X−1)+ relative to the standard presentation 〈X |R ∪ RW 〉 of S1 ∗U S2 may be obtained
by deleting all the loops labelled by e1, e2 and t in

A (X , RH N N ∪ R ∪ {t = e1, t = e2};w).

3 The proof of the main result

In this section we prove Theorem 1. The following proposition is a consequence of
Lemma 1 and Proposition 1.

Proposition 2 The Schützenberger automaton of a word w ∈ (X ∪ X−1)+ relative to
the standard presentation of Se1

1 ∗U1 Se2
2 of the amalgam [Se1

1 , Se2
2 ; U 1, ω1

1, ω
1
2] may be
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Fig. 1 A graphical
representation of a separated
t-opuntoid graph

obtained from the Schützenberger automaton A (X , RH N N ∪ R;w′) of the separated
normal form w′ of w by identifying the initial and terminal vertices of each t-edge
and then deleting all the obtained loops labelled by t.

From [3, Lemma 3.3] we may conclude that the automatonA (X , RH N N ∪ R;w′) of
Lemma 1 has a particular shape as a weak t-opuntoid automaton on X related to the
associated HNN-extension. This shape is described in the following definition (see
Fig. 1 for a graphical representation).

Definition 4 A weak t-opuntoid automaton (graph) on X is called separated if the
following two conditions hold:

(i) each S-lobe has edges labeled either by elements in X1 ∪ X−1
1 ∪ {e1, e−1

1 } (an
S-lobe colored by 1), or X2 ∪ X−1

2 ∪ {e2, e−1
2 } (an S-lobe colored by 2);

(ii) each t-edge is pointing from an S-lobe colored by 1 to a t-adjacent one colored
by 2.

We denote by Ct the set of all separated weak t-opuntoid graphs on X related to the
associated HNN-extension S∗, and byC we denote the set of all weak opuntoid graphs
on X ∪{e1, e2} associated to the amalgam [Se1

1 ; Se2
2 , U 1;ω1

1, ω
1
2]. As it is suggested in

Proposition 2 there is a bijection between these two sets. Indeed, we have the following
lemma.

Lemma 2 The map ψ : Ct → C defined by identifying the initial vertex with the
terminal one of each t-edge and then erasing the obtained loop, is a bijection.

Proof Let Γ be a separated weak t-opuntoid graph in Ct . We need to prove that ψ

is well defined and the obtained graph ψ(Γ ) is a weak opuntoid graph (see Fig. 2).
Indeed, it is enough to show that in the act of identifying the initial and final vertex
of each t-edge there is no pair of S-lobes with the same color that become adjacent
in the graph ψ(Γ ). This follows from the fact that each vertex of a t-edge belongs to
exactly one t-edge; this is a consequence of the determinism of Γ and condition (ii) of
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Fig. 2 A graphical representation of the map ψ of Lemma 2

Definition 4. Therefore, there is a one-to-one correspondence between each S-lobe in
Γ and the corresponding lobe in ψ(Γ ), and since no pair of S-lobes are identified in
the lobe graph, then the lobe graph ofψ(Γ ) is a tree. Hence,ψ(Γ ) is a week opuntoid
graph.

The map ψ is a bijection. Indeed, we may define the inverse of map ψ−1 by
separating adjacent lobes Δ1,Δ2 of a weak opuntoid graph Γ ′ in C by implanting
t-edges between them in the following way. Since Δ1,Δ2 share just the intersection
vertices V (Δ1)∩V (Δ2)wemay considerΔ1,Δ2 disjoint and so for each v ∈ V (Δ1)∩
V (Δ2) we create a new pair of vertices v(1) ∈ V (Δ1), v(2) ∈ V (Δ2) in between
which we implant the t-edge (v(1), t, v(2)). One may show that this map is well
defined and that it is actually the inverse of ψ . ��

If, instead of considering the class of weak t-opuntoid (weak opuntoid) graphs, we
consider the class of t-opuntoid (weak opuntoid) automata, and we extend the map ψ

of Lemma 2 accordingly in the obvious way, then the map ψ is not an isomorphism
anymore. The problem is that if α is the initial state and β is the final state of the
weak t-opuntoid automaton (α, Γ, β), and α, β belongs to the same t-edges, then in
the process of performing the quotient of this edge these two vertices are identified.
However, this ambiguity is controlled by property (ii) of Definition 4. Indeed, since
a weak t-opuntoid graph is deterministic and by (ii) of Definition 4, each vertex v

may have at most one associate t-adjacent vertex v. It is also evident that these two
vertices are identified in an intersection vertex by the map ψ . Thus, we may prove the
following lemma.

Lemma 3 Let w1, w2 ∈ (X ∪ X−1)+, and let w′
1, w

′
2 be the corresponding sepa-

rated normal forms of w1, w2, respectively. Let A (X , RH N N ∪ R;w′
1) = (α, Γ1, β),

A (X , RH N N ∪ R;w′
2) = (α′, Γ2, β

′) be the corresponding Schützenberger automata
that are separated weak t-opuntoid automata such that:

ψ ((α, Γ1, β)) = ψ
(
(α′, Γ2, β

′)
) = (α, Γ , β).
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Then, there are ε1, ε2 ∈ {0, 1,−1} such that

tε1w′
1tε2 = w′

2 in S∗.

Proof By Lemma 2 we have that the underlying graphs of A (X , RH N N ∪ R;w′
1)

andA (X , RH N N ∪ R;w′
2) are isomorphic. Hence, without loss in generality, we may

assume Γ1 = Γ2 = Γ . Furthermore, by the previous observation (α′, tε1 , α) and
(β, tε2 , β ′) are t-edges in Γ for some ε1, ε2 ∈ {0, 1,−1}, where ε = 0 means that
the two vertices are equal. Now, using the fact that (α, Γ, β) and (α′, Γ, β ′) are the
Schützenberger automata of w′

1, w
′
2, respectively, and using the language properties

of Schützenberger automata [18] we get:

w′
2 ≥ tε1 t−ε1w′

2t−ε2 tε2 ≥ tε1w′
1tε2 ≥ w′

2

from which we derive the statement of the lemma tε1w′
1tε2 = w′

2 in S∗. ��
Before proving the main result we need three more lemmas. The following one is an
easy observation.

Lemma 4 Let w1, w2 ∈ (X ∪ X−1)∗, then w1 = w2 in Se1
1 ∗U1 Se2

2 if and only if
w1 = w2 in S1 ∗U S2.

Lemma 5 Let w1, w2 ∈ (X ∪ X−1)+, and let w′
1, w

′
2 be the corresponding separated

normal forms of w1, w2, respectively. Then, w1 = w2 in S1 ∗U S2 if and only if there
are ε1, ε2 ∈ {0, 1,−1} such that

tε1w′
1tε2 = w′

2in S∗.

Proof The “if part” is a consequence of (1) and Lemma 4. To prove the “only if” part
letA (X , RH N N ∪ R;w′

1) = (α, Γ1, β),A (X , RH N N ∪ R;w′
2) = (α′, Γ2, β

′) be the
corresponding Schützenberger automata. Since w1 = w2 in S1 ∗U S2, then by Lemma
4 we have w1 = w2 in Se1

1 ∗U1 Se2
2 . Thus, by Proposition 2, and the definition of the

morphism ψ we get

ψ ((α, Γ1, β)) = ψ
(
(α′, Γ2, β

′)
)
.

Hence, the statement follows by Lemma 3. ��
The last lemma regards the finiteness of the R-classes in the free product of inverse
semigroups, for completeness we report here in form of lemma.

Lemma 6 [11, Proposition 5.1] If S1, S2 are semigroups with finite R-classes, then
the free product S1 ∗ S2 has finite R-classes.

We are now in position to prove the main theorem of the paper.

Proof (of Theorem 1) Assume, contrary to the statement, that the word problem in
an HNN-extension with the conditions stated in the theorem is decidable. Consider
any amalgam of inverse semigroups [S1, S2; U, ω1, ω2] satisfying the conditions of
Theorem 2 which are:
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– S1, S2 have finite R-classes;
– U is a free inverse semigroup with zero of finite rank;
– the membership problem of ωi (U ) is decidable in Si for i = 1, 2;
– ω1, ω2 and their inverses are computable functions;

and consider the associated Yamamura’s HNN-extension:

S∗ = [Se1
1 ∗ Se2

2 ; U e1
1 , U e2

2 ; (ω1
1)

−1 ◦ ω1
2]. (2)

By Lemma 6 we have that Se1
1 ∗ Se2

2 has finiteR-classes. Furthermore, U e1
1 � U e2

2 is
a free inverse monoid with zero of finite rank, and both (ω1

1)
−1 ◦ ω1

2 and (ω1
2)

−1 ◦ ω1
1

are computable functions. Since the membership problem of ωi (U ) is decidable in Si

for i = 1, 2, then the same occurs for U e1
1 , U e2

2 in Se1
1 ∗ Se2

2 . Therefore, S∗ of (2) is a
Yamamura’s HNN-extensions satisfying the conditions of the statement, and by our
assumptions it has solvable word problem. However, if we put S1 ∗U S2 = I nv〈X |R ∪
Rw〉 by Lemma 5 we may decide whether or not two words w1, w2 ∈ (X ∪ X−1)∗ are
equal in S1∗U S2 by simply building (effectively) the associated separated normal forms
w′
1, w

′
2, and then using the decidability of the word problem for the HNN-extension

(2) to effectively test whether or not there are ε1, ε2 ∈ {0, 1,−1} such that

tε1w′
1tε2 = w′

2 in S∗.

Since there are finitely many cases to consider, this is a decidable task, hence the word
problem for S1 ∗U S2 is decidable. However, this contradicts Theorem 2. ��
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