
Collection and Identification Of Microservices Patterns

And Antipatterns

Rafik Tighilt1, Manel Abdellatif1,2, Nader Abu Saad3, Naouel Moha1, and
Yann-Gaël Guéhéneuc4

1 Université du Québec à Montréal, Montréal, Québec, Canada
tighilt.rafik@courrier.uqam.ca, naouel.moha@uqam.ca

2 Polytechnique Montréal, Montréal, Québec, Canada.
manel.abdellatif@polymtl.ca

3 Bethlehem University, Bethlehem, Palestine
nabusaad@bethlehem.edu

4 Concordia University, Montréal, Québec, Canada
yann-gael.gueheneuc@concordia.ca

Abstract

Microservices architectural style is becoming more and more popular in academia and
industry. However, a lack of understanding of its core concepts and the absence of ground-
truth leads to a lot of misconceptions and development mistakes. In our research work,
we aim to clarify the academic knowledge on microservices through the collection and
the automatic identification of microservices patterns and anti-patterns. To this end, we
aim to (1) introduce an exhaustive collection of microservices (anti-)patterns, and (2)
propose an automatic approach for the identification of (anti-)patterns in microservice-
based systems. The continuous integration and continuous delivery for microservices can
introduce anti-patterns that may affect the maintainability of the system and decrease
its quality. Thus, we searched for re-engineering tools used to identify (anti-)patterns in
microservice-based systems. The results of our analysis showed that there is no fully-
automated identification approach in the literature. This motivates us to propose (anti-
)patterns for the identification process as a first step and then investigate how we can
automatically identify them from the artifacts of microservice-based systems.

1 Introduction

A microservice is defined as a small service, having a single responsibility, running on its own
process and communicating with lightweight mechanisms [5]. Microservices are generally built
around business capabilities and independently deployable by a fully automated deployment
machinery with a minimum centralized management of these services [8]. An illustration of
a microservice-based system could be an e-commerce application. Each microservice of this
system fulfils a single business function (Inventory microservice, Shipping microservice, Cart
microservice, etc.), and has its own database. These microservices are loosey coupled, and
communicate through lightweight REST APIs.

The popularity of microservice architectures has grown in the last few years due to the
inability of monolithic applications to handle applications scalability and development cycles
[8]. Also, this architectural style has been adopted by several major actors in industry such as
Netflix, Amazon and Riot Games, which leads to its increasing popularity.

The dynamic and distributed nature of microservice-based systems make them a good so-
lution to offer greater agility and operational efficiency for enterprise architectures. However,
the continuous integration and continuous delivery for microservices can introduce common
bad practiced solutions i.e., anti-patterns - opposed to design patterns, that are good solutions



Identification Of Microservices (Anti-)Patterns Tighilt, Abdellatif, Abu Saad, Moha and Guéhéneuc

to recurring problems. These anti-patterns may affect the maintainability of the system and
degrade the quality of design and QoS of the system [11]. Shared database is a good illustration
of microservices anti-patterns. This anti-pattern goes against the principle of loosely coupled
microservices [1]. It also prevents each microservice to use the right type of database that suits
its needs (relational, graph, document, etc.). It also leads to making the whole system go down
if some parts of the persistence are down. On the other hand, External configuration [4], which
consists in externalizing all the configurations, including endpoint URLs and credentials, which
can be loaded on microservice startup or on the fly, is a good practice to allow changes in
configuration properties without rebuilding and redeploying the entire microservice.

Context: Assessment on design, maintenance and evolution of microservice-based
systems. Anti-patterns are ”bad” solutions to recurring problems. These solutions often lead
to harder maintainability of software systems. Like any other architectural style, microservice-
based systems also face challenges with maintainability and evolution due to anti-patterns [15].
Thus, changing and implementing functionalities becomes more and more difficult.

Problem: No automated approach to identify (anti-)patterns in microservice-
based systems. The nature of microservice-based systems makes them very dynamic (multi-
language systems, different operating environments, etc.). This makes the identification of
(anti-)patterns in this environment an interesting problem, especially because there is a lack of
automated tools in the literature to identify (anti-)patterns in microservice-based systems.

Motivation: Software maintenance is one of the most requiring fields in software indus-
try, whether in expanses or in resources [3]. The identification of (anti-)patterns within a
microservice-based system is also a part of the maintenance process, and it leads to a better
assessment of the quality of software. In summary, with our automatic tool-based approach,
we aim to contribute to better maintenance and quality of microservice-based systems.

Challenges: Microservices are, by definition, independent. With that in mind, we will
need to overcome some challenges during our work process. In fact, microservice-based systems
can be built using different programming languages, which makes the identification process
more challenging. Microservices are also deployed on multiple providers using different tools
and configurations. Also, for our empirical study, we will need to find as much open-source
microservice-based systems as we can to analyze them and validate our automatic approach.

Contributions: In our work, we want to (1) introduce an exhaustive collection of microser-
vices (anti-)patterns, and (2) propose an automatic tool-based approach for the identification
of (anti-)patterns in microservice-based systems.
Our approach is based on software re-engineering techniques to extract from the application
useful information for pattern identification.

The remainder of this paper is structured as follows. In Section 2 we describe our research
objectives. In Section 3 we outline our methodology for (anti-)patterns identification from
microservice-based systems. In Section 4 we describe some related works to microservices
(anti-)patterns, as well as (anti-)patterns identification techniques. Finally, Section 5 concludes
this paper.

2



Identification Of Microservices (Anti-)Patterns Tighilt, Abdellatif, Abu Saad, Moha and Guéhéneuc

2 Research objectives

In this section we will describe our research objectives and the related research questions.

2.1 Collecting microservices (anti-)patterns

The first goal of our study is to define a catalog of (anti-)patterns of microservice-based systems.
Indeed, a lot of these (anti-)patterns are scattered in the literature, but it is still very difficult to
synthesise and fully understand them when working on a real-world project. For this purpose,
we will try to answer the following research question.

RQ 1: What are the (anti-)patterns for developing microservice-based systems ?
Nonetheless we will also study real-world applications to see whether these best practices are
applicable to large scale projects or to industry driven systems. This will allow us to study the
gap between academia and industry regarding the way microservice-based systems are built.

2.2 Automatic (anti-)patterns identification

The second goal of our work is to identify (anti-)patterns directly from the analysis of
microservice-based systems artifacts (source code, deployment scripts, etc.). To this end, we
will answer the following research question.

RQ 2: How can we automatically identify (anti-)patterns by analysing microservice-based
systems artifacts ?

3 Methodology

Our research process, described in Figure 1 is divided in two steps, each step leading to the
answer of one research question. The following subsections details each step and their validation.

Figure 1: Research methodology

3



Identification Of Microservices (Anti-)Patterns Tighilt, Abdellatif, Abu Saad, Moha and Guéhéneuc

3.1 Collection of microservices (anti-)patterns

For the first step of our work, we will study the literature to extract microservices (anti-
)patterns. We will then map the same concepts described with different names into our own
taxonomy.

We can take as an example the Shared database anti-pattern, for which the corresponding
pattern is described in the literature by multiple definitions, as listed in Table 1.

Name Definition Source
Decentralised Data Management
and Governance

Data is decentralised and distributed between
the constituent microservices.

[13]

Database per service Each microservice manages its own data. [12]
Isolated Data & State Each service owns its data and its state. [7]

Table 1: Shared Database corresponding pattern in the literature

We will also take into account in our work the industrial literature, in order to identify
the possible gap between academia and industry in the field of microservices (anti-)patterns.
This will allow us to understand the problems occurring when developing microservices in a
day-to-day basis, and to identify the solutions implemented by the industry and the emerging
patterns we can extract.

In addition to the literature study, we will examine real-world microservice-based systems1,
by analyzing these systems artifacts, such as source code, documentation and deployment scripts
to extract common practices used by the industry when building microservices.
We aim to group the (anti-)patterns extracted from the literature and common industry prac-
tices into a textual specification of (anti-)patterns. We can then extract a set of automated
rules to identify (anti-)patterns with our automatic tool-based approach.

3.2 Automatic (anti-)patterns identification

The second step of our work is to automatically identify (anti-)patterns in microservice-based
systems. We aim to do so by specifying a meta-model for microservice-based systems. This
meta-model will describe the structure of a microservice-based system, its main components
(e.g., list of microservices, deployment scripts, environment variables, etc.) as well as its main
dependencies (e.g., databases, configuration files, calls between microservices, etc.). This meta-
model will serve as a roadmap for our detection rule engine that will embed the different
detection rules of our targeted microservices (anti-)patterns. These detection rules will rely on
several metrics such as the number of microservices in the system, the number of endpoints per
microservice, the number of microservices per databases, fan in / fan out, etc.

If we take the example of Shared database, we can identify this anti-pattern through the anal-
ysis of the generated meta-model of the microservice-based system. We focus on the description
of the deployment scripts and the source code of the microservices. From these artifacts, we
calculate the number of microservices by database. This metric will allow us to identify the
shared databases between the microservices.

On the other hand, if we want to identify violations of the External configuration pattern, we
can analyse the source code to find hard coded configuration-related information such as URLs,
Database credentials, configuration constants, as well as the usage of environment variables
extracted from our meta-model.

1https://github.com/davidetaibi/Microservices_Project_List

4

https://github.com/davidetaibi/Microservices_Project_List


Identification Of Microservices (Anti-)Patterns Tighilt, Abdellatif, Abu Saad, Moha and Guéhéneuc

3.3 Validation

We will validate the results of our identification process by performing an empirical study on
real-world microservice-based systems to obtain outputs from our tool, which we will compare
with the output gathered through a manual analysis of a subset of the analysed systems. We
already identified microservice-based systems on which we can perform our validation, such as
Service Commerce2 or LakeSide3.

4 Related work

Several work has been done regarding (anti-)patterns definition and identification for microservice-
based systems. For the understanding of the microservice architecture and patterns definition,
Pahl and Jamshdi [10] conducted a systematic mapping study on 21 selected works that were
published from 2014 to 2016. They classified and compared the selected studies based on a
characterisation framework they defined in their work, resulting in a discussion of the agreed
and emerging concerns within the microservices architectural style.
Zimmerman [16] proposed to map microservices tenets to service oriented architecture pat-
terns to conclude that microservices constitute one special implementation approach to service
oriented architecture. Garriga [2] in his work, proposed a taxonomy of concepts regarding
microservices, which includes the whole microservices life-cycle (design, implementation, de-
ployment, runtime and cross-cutting concerns), as well as organizational aspects.
Soldani et al. [14] conducted a study on the industrial grey literature. They did so by identi-
fying, taxonomically classifying, and systematically comparing the existing grey literature on
pains and gains of microservices, from their design to their development to the state of the art,
in order to fill the gap between the academia and the day-to-day industry practices.

For the real-world software study, Marquez and Astudillo[6] extended their previous work
with Osses [9] determining whether architectural patterns have been used in the development
of microservice-based systems by providing (i) a catalog of microservices architectural patterns
reported in academia and industry, (ii) a correlation between quality attributes and microser-
vices architectural patterns, (iii) a list of technologies, deployed as frameworks, used in the
construction of microservices-based systems with microservices architectural patterns, and (iv)
a comparative analysis of service oriented architecture and microservices architectural patterns.
They did so by analysing a set of microservices based open-source projects on GitHub.

Through our literature study, we conclude that very few work has been done in the field of
automatic identification of (anti-)patterns in microservice-based systems. Thus, we identified a
gap that we aim to fill through our research process.

5 Conclusion

Microservcies are becoming a very popular architectural style, supported by a lot of companies
(Netflix, Amazon, Riot Games, etc.). Thus, understanding this architecture, its (anti-)patterns,
and the ecosystems around is fundamental. A lot of work has been done in that field, but there
is a little that groups common practices together and synthesise the knowledge acquired.
On the other hand, when it comes to (anti-)patterns identification in microservice-based sys-
tems, very few work has been done to propose an automatic tool-based approach to analyse

2https://github.com/antonio94js/servicecommerce
3https://github.com/Microservice-API-Patterns/LakesideMutual

5

https://github.com/antonio94js/servicecommerce
https://github.com/Microservice-API-Patterns/LakesideMutual


Identification Of Microservices (Anti-)Patterns Tighilt, Abdellatif, Abu Saad, Moha and Guéhéneuc

software artifacts and define if a given system respects or breaks a set of microservices pat-
terns. In this paper we presented our plans for creating a collection of (anti-)patterns regarding
microservice-based systems, by performing a systematic literature and state of the practice
review. We also described our automatic tool-based approach for the identification of (anti-
)patterns through the analysis of microservice-based software artifacts. We are still at the
beginning of our research work. We will now propose a complete collection of microservices
(anti-)patterns and an automatic identification technique to help practitioners and researchers
respect patterns when developing microservice-based systems.

References

[1] Brogi, A., Neri, D., Soldani, J., and Zimmermann, O. Design principles, architectural smells
and refactorings for microservices: A multivocal review.

[2] Garriga, M. Towards a taxonomy of microservices architectures. In Software Engineering and
Formal Methods. Springer International Publishing, 2018, pp. 203–218.

[3] Hanna, M. Maintenance burden begging for remedy. SOFTWARE MAGAZINE-
WESTBOROUGH- 13 (1993), 53–53.

[4] Humble, J., and Farley, D. Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation. Pearson Education, 2010.

[5] Lewis, J., and Fowler, M. Microservices a definition of this new architectural term. https:

//martinfowler.com/articles/microservices.html. Accessed: August 2019.

[6] Marquez, G., and Astudillo, H. Actual use of architectural patterns in microservices-based
open source projects. In 2018 25th Asia-Pacific Software Engineering Conference (APSEC) (dec
2018), IEEE.

[7] Microsoft. Microservices: Isolated data and state. https://blogs.msdn.microsoft.com/

azuredev/2018/04/11/microservices-isolated-data-state/. Accessed: August 2019.

[8] Newman, S. Building Microservices: Designing Fine-Grained Systems. O’Reilly Media, Inc.,
2015.

[9] Osses, F., Marquez, G., and Astudillo, H. Exploration of academic and industrial evidence
about architectural tactics and patterns in microservices. In Proceedings of the 40th International
Conference on Software Engineering Companion Proceeedings - ICSE (2018), ACM Press.

[10] Pahl, C., and Jamshidi, P. Microservices: A systematic mapping study. In Proceedings of the
6th International Conference on Cloud Computing and Services Science (2016), SCITEPRESS -
Science and and Technology Publications.

[11] Palma, F. Detection of soa antipatterns. In Service-Oriented Computing - ICSOC 2012 Workshops
(Berlin, Heidelberg, 2013), A. Ghose, H. Zhu, Q. Yu, A. Delis, Q. Z. Sheng, O. Perrin, J. Wang,
and Y. Wang, Eds., Springer Berlin Heidelberg, pp. 412–418.

[12] Richardson, C. Microservicespattern: Database per service. http://microservices.io/

patterns/data/database-per-service.html. Accessed: August 2019.

[13] Shadija, D., Rezai, M., and Hill, R. Towards an understanding of microservices. In 2017 23rd
International Conference on Automation and Computing (ICAC) (Sep. 2017), pp. 1–6.

[14] Soldani, J., Tamburri, D. A., and Heuvel, W.-J. V. D. The pains and gains of microservices:
A systematic grey literature review. Journal of Systems and Software 146 (dec 2018), 215–232.

[15] Taibi, D., and Lenarduzzi, V. On the definition of microservice bad smells. IEEE Software 35,
3 (May 2018), 56–62.

[16] Zimmermann, O. Microservices tenets. Computer Science - Research and Development 32, 3-4
(2016), 301–310.

6

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://blogs.msdn.microsoft.com/azuredev/2018/04/11/microservices-isolated-data-state/
https://blogs.msdn.microsoft.com/azuredev/2018/04/11/microservices-isolated-data-state/
http://microservices.io/patterns/data/database-per-service.html
http://microservices.io/patterns/data/database-per-service.html

	Introduction
	Research objectives
	Collecting microservices (anti-)patterns
	Automatic (anti-)patterns identification

	Methodology
	Collection of microservices (anti-)patterns
	Automatic (anti-)patterns identification
	Validation

	Related work
	Conclusion

